La Enciclopedia Libre Universal en Español dispone de una lista de distribución pública, enciclo@listas.us.es

Programa del transbordador espacial

De la Enciclopedia Libre Universal en Español
Saltar a: navegación, buscar
El Transbordador Espacial
Detalle

Programa de la NASA para el empleo de vehículos espaciales reutilizables, que finalizó el 21 de julio de 2011.

El Programa del transbordador espacial fue ideado durante las misiones Apollo, antes de la invención del transbordador espacial los satélites eran lanzados al espacio pero no podían volver a la Tierra en caso de alguna falla para su reparación. Con las naves tripuladas se perdían miles de millones de dólares en cohetes que se iban separando en fases menores a medida en que avanzaban hacia el espacio y una vez desechados se quemaban durante el ingreso a la atmósfera. El transbordador espacial se convirtió de esta manera en el primer vehículo espacial reutilizable.

El transbordador espacial fue aprobado como programa en 1972. Siendo en parte una aeronave y en parte una nave espacial, el transbordador requirió necesitó de importantes avances tecnológicos para su desarrollo incluyendo miles de losetas de protección térmica capaces de resistir el calor de la reentrada en el curso de varias misiones, además de sofisticados motores que pudieran ser usados una y otra vez sin ser desechados. El orbitador con forma de avión tiene tres de estos Motores Principales, los cuales queman hidrógeno y oxígeno líquido que están almacenados en el tanque externo. Fijados al tanque externo se encuentran dos cohetes de combustible sólido o reforzadores llamados SRB, en inglés Solid Rocket Boosters, los cuales proveen la mayor parte del empuje durante el despegue. Los “boosters” se apagan y son arrojados al océano para ser recuperados, rellenados y preparados para el próximo uso. Una vez que los cohetes de combustible sólido han sido desechados los tres motores principales del orbitador siguen quemando el combustible del tanque externo hasta aproximadamente los ocho minutos de vuelo.

Configuración del Transbordador Espacial

El Transbordador Espacial fue desarrollado durante los años 70. Enterprise, fue un vehículo de prueba no apto para el vuelo espacial, simplemente fue usado para ensayos de acercamiento y pruebas de aterrizajes en 1977 los cuales demostraron las capacidades aerodinámicas para aterrizar después de separarse de una aeronave. El primer orbitador en hacer su debut espacial fue el Columbia, el 12 de abril de 1981.
Las primeras cuatro misiones del Sistema de Transporte Espacial (STS) fueron vuelos de prueba para evaluar el diseño de ingeniería, características térmicas y desempeño en el espacio.
Los vuelos operacionales comenzaron con el STS-5 en noviembre de 1982, con una tripulación de cuatro personas a bordo.

Con el tiempo las tripulaciones fueron creciendo: la primera tripulación de cinco astronautas fue en el STS-7 en 1983 y la de seis fue en el STS-9 a finales del mismo año. La primera tripulación de 7 personas fue en STS 41-C en 1984 y el record de ocho fue en 1985 a bordo del STS 61-A.

Debido a las grandes tripulaciones, los astronautas fueron divididos en dos grupos: pilotos, responsables del vuelo y mantenimiento del orbitador; y los especialistas de misión, encargados de los experimentos y de la carga útil. Finalmente se creó otra categoría: los especialistas de carga, los cuales no tienen que hacer necesariamente un curso de astronauta. Éstos se ocupan de experimentos de abordo.

El segundo orbitador, el Challenger tuvo su primer vuelo en 1983, seguido por el Discovery en 1984 y el Atlantis en 1985. El quinto orbitador se unió a la flota en 1991 y realizó su vuelo de inicio en 1992.

El STS introdujo muchas herramientas que son utilizadas en el espacio: el Sistema de Manipulación Remota, un brazo de 15,24 metros de longitud construido por la Agencia Espacial Canadiense, es capaz de mover grandes y pesados objetos desde y hacia la bahía de carga del transbordador la cual tiene unos 18,29 metros de largo. El módulo Spacelab construido por la [http://www.esa.int Agencia Espacial Europea (ESA), provee un laboratorio presurizado y completamente equipado para que los científicos puedan realizar diversos experimentos, cubriendo un amplio espectro de la investigación: desde la astronomía, la creación de nuevos materiales, la observación de la Tierra, el estudio de fenómenos físicos y hasta la investigación biomédica. La Unidad de Vuelo Maniobrable permite a los astronautas moverse libremente en el espacio sin estar conectado al Transbordador valiéndose de unos pequeños cohetes fijados a la estructura en forma de silla para el desplazamiento.

Al inicio del Programa de Transbordadores los satélites de comunicaciones eran cargas comunes, con un promedio de tres lanzamientos por año. El 28 de enero de 1986 el accidente del Challenger que terminó con la vida de su tripulación debido a una falla de una junta de uno de los cohetes de combustible sólido, cambió la política del transporte de satélites. Una vez que la NASA decidió regresar con los transbordadores en septiembre de 1988 se dedicó a llevar solamente carga útil al transbordador o la que requiriera de la presencia humana.

La mayoría de las misiones han sido científicas y de defensa. Entre los proyectos científicos más importantes se destaca la puesta en órbita del Telescopio Espacial Hubble, la sonda interplanetaria Galileo que realizó importantes descubrimientos, el Observatorio de Rayos Gamma y el transporte de módulos y abastecimiento para la construcción de la Estación Espacial Internacional (ISS).

En 1995 el transbordador espacial fue preparado para la concepción de la Estación Espacial Internacional, motivo por el cual realizó una serie de acoplamientos con los rusos en la estación Mir. Finalmente y debido a los retrasos por presupuesto de la agencia espacial rusa se dio comienzo a la construcción de la ISS en 1998.

Desintegración del Columbia

El 1 de febrero de 2003 la misión STS-107 del transbordador Columbia se desintegra durante la reentrada en la atmósfera pereciendo sus siete ocupantes. Durante el lanzamiento del Columbia el 16 de enero, a los 82-83 segundos de vuelo un pedazo de espuma aislante golpeó la parte inferior del ala izquierda del orbitador provocando el desprendimiento de varias losetas de aislamiento cerca del tren de aterrizaje, marcado de esta manera su trágico destino.

Índice

Misiones del Programa STS

===1981:=== STS-1, STS-2.

===1982=== STS-3, STS-4, STS-5.

===1983=== STS-6, STS-7, STS-8, STS-9,

===1984=== STS 41-B, STS 41-C, STS 41-D, STS 41-G, STS 51-A.

===1985=== STS 51-C, STS 51-D, STS 51-B, STS 51-G, STS 51-F, STS 51-I, STS 51-J, STS 61-A, STS 61-B.

===1986=== STS 61-C, STS 61-L (tragedia del Challenger).

===1988=== STS-26, STS-27.

===1989=== STS-29, STS-30, STS-28, STS-34, STS-33.

===1990=== STS-32, STS-36, STS-31, STS-41, STS-38, STS-35.

===1991=== STS-37, STS-39, STS-40, STS-43, STS-48, STS-44.

===1992=== STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53.

===1993=== STS-54, STS-56, STS-55, STS-57, STS-51, STS-58, STS-61.

===1994=== STS-60, STS-62, STS-59, STS-65, STS-64, STS-68, STS-66.

===1995=== STS-63, STS-67, STS-71, STS-70, STS-69, STS-73, STS-74.

===1996=== STS-72, STS-75, STS-76, STS-77, STS-78, STS-79, STS-80.

===1997=== STS-81, STS-82, STS-83, STS-84, STS-94, STS-85, STS-86, STS-87.

===1998=== STS-89, STS-90, STS-91. Falta completar.

===1999=== Falta completar.

===2000=== Falta completar.

===2001=== Falta completar.

===2002=== Falta completar.

===2003=== STS-107 (tragedia del Columbia).

Ver también: Designación de nombres del transbordador espacial.

Fuente de combustibles

El Transbordador tiene dos fuentes de combustible: el Tanque Externo y dos Cohetes Reforzadores Sólidos, en inglés Solid Rocket Boosters (SRB). El orbitador también almacena combustibles hipergólicos que son usados durante la estadía en el espacio.

El impulso combinado es tal que en un lapso de 0 a 8,5 segundos el Transbordador alcanza una velocidad de 28 km/seg.

El Tanque Externo

El Tanque Externo llega hasta el Edificio de Ensamblaje de Vehículo en una enorme barca. Una vez en esta instalación, es procesado y colocado en posición vertical para ser unido al orbitador.

El Tanque Externo es el elemento más grande y más pesado del Transbordador Espacial. Además de alimentar a los tres motores principales del Orbitador, el Tanque cumple la función de espina dorsal del Transbordador al absorber las cargas de empuje durante el lanzamiento.

El Tanque Externo tiene tres componentes principales: el tanque de oxígeno líquido superior, una sección intermedia despresurizada que contiene los componentes eléctricos y une a los dos tanques, y por último, un tanque inferior de hidrógeno líquido. El Tanque Externo tiene aproximadamente 47 metros de largo y 8,4 metros de diámetro. El oxígeno e hidrógeno líquidos son cargados en la plataforma de lanzamiento.

Después de que los tres motores principales del Orbitador se apagan, el Tanque Externo es separado del Orbitador gracias al encendido de retrocohetes en un proceso llamado MECO, siglas que en inglés significan Corte del Motor Principal (Main Engine Cut-Off) y a partir de ese momento sigue una trayectoria balística hacía el Océano Índico. Este es el único componente del Transbordador Espacial que no es reutilizable.

Los Motores Principales

Son tres, y proveen del empuje necesario para alcanzar la velocidad de escape. Los motores principales están ubicados en la parte inferior del Orbitador y antes de ser instalados en el mismo han de haber pasado por una prueba de encendido en el Centro Espacial Dennis en Misisipí de donde son transportados en camión hasta el Edificio de Ensamblaje de Vehículo.

Los motores miden unos 4,2 metros de altura y cada uno pesa unas 2 toneladas. La fuerza que producen es tremenda: 12 millones de caballos de fuerza, lo necesario para proveer de energía a 10.000 hogares. El elemento principal de los motores es la turbobomba la cual se encarga de alimentar de propelente a la cámara de combustión. La potencia de la turbobomba también es descomunal, ya que tiene con sólo el tamaño de un motor V-8 tiene la fuerza de 28 locomotoras, por lo que si llegara a explotar enviaría una columna de hidrógeno a 58 km a la redonda. Cuando se enciende, la turbobomba consume una tonelada de combustible por segundo.

Los motores principales utilizan LOX y LH2 que se encienden en la cámara de combustión que no mide más de 25 centímetros de diámetro a una temperatura de 3.300 °C lo que le da una gran presión. Una vez que son liberados, los gases calientes son expulsados por la tobera. Después de la separación de los boosters, los motores principales siguen encendidos por varios minutos. Los motores principales son reutilizables para 55 despegues y operan con un rendimiento máximo de 104%.

Cohetes Reforzadores Sólidos

El Transbordador Espacial usa el cohete de propulsión sólida más grande del mundo. Cada cohete reforzador, o booster en inglés, contiene 453.600 kg de propelente en la forma de una sustancia sólida de consistencia similar a la goma de borrar. El Cohete de Reforzador Sólido (SRB) tiene cuatro secciones centrales que contienen el propelente. La parte superior tiene un hueco en forma de estrella que se extiende hasta dos tercios hacia abajo hasta tomar la forma de un cilindro. Cuando entran en ignición todas las superficies expuestas reaccionan violentamente proveyendo el impulso necesario. Debido a la forma de estrella del segmento superior, la eficiencia de impulso es mucho mayor que con una forma cilíndrica.

Después de proveer un empuje equivalente a un tercio del total, los SRBs se separan a los 2 minutos 12 segundos de vuelo.

Propelentes

El combustible utilizado por el Transbordador Espacial proviene del Tanque Externo y de los Cohetes Reforzadores o también conocidos como Boosters. El propelente empleado en los boosters es perclorato de amonia y tiene una consistencia sólida; respecto al Tanque Externo, aquí sucede lo contrario ya que está dividido en dos tanques el superior contiene oxígeno líquido (LOX) y el segundo tanque contiene hidrógeno líquido (LH2) los cuales se mezclan en la cámara de combustión de los motores principales del Transbordador Espacial proveyendo la combustión.

Una característica importante de los combustibles es su impulso específico, el cual es utilizado para medir la eficiencia de los propelentes de los cohetes en términos de segundos. Mientras más alto es el número, más “caliente” es el propelente.

La NASA utiliza cuatro tipos de propelentes: petróleo, criogénicos, hipergólicos y sólidos.

El petróleo es en realidad un tipo de kerosén similar al quemado en las lámparas y estufas. Sin embargo, en este caso se trata de un tipo llamado RP-1 (Petróleo Refinado) que es quemado con oxígeno líquido (oxidante) para proveer de impulso. El RP-1 sólo se utiliza en los cohetes Delta, Atlas-Centaur y también fue utilizado en las primeras etapas del Saturn 1B y el Saturn 5.

En el Programa del Transbordador el petróleo no es usado, salvo para etapas de satélites. En el despegue, el Transbordador Espacial utiliza el tipo criogénico y sólido, mientras que en órbita hace uso de los tipos hipergólicos.

Criogénicos

Los propelentes criogénicos son oxígeno líquido (LOX) que es utilizado como oxidante, y también hidrógeno líquido (LH2) que es el combustible. El LOX permanece en estado líquido a –183°C y el LH2 a –253°C.
En su estado gaseoso, el oxígeno e hidrógeno tienen densidades tan bajas que sería necesario enormes tanque para su almacenamiento, por ello deben ser enfriados y comprimidos para ser almacenados en los tanques de los cohetes. Debido a la continua tendencia de los criogénicos en volver a su estado natural, es decir, gaseoso, su uso es menos satisfactorio para los cohetes militares debido a que éstos deben permanecer por largos períodos de tiempo en las bases de lanzamiento.

A pesar de las dificultades que acarrean para su almacenamiento, la combinación LOX-LH2 tienen una gran eficiencia. El hidrógeno tiene una potencia de 40% más que los otros combustibles y es muy liviano pesando cerca de 0,45 kg por cada 3,8 litros. El oxígeno es mucho más pesado, con 4,5 kg por cada 3,8 litros.

Los motores de alta eficiencia a bordo del orbitador usan hidrógeno líquido y oxígeno líquido y tienen un impulso específico de 455 segundos, mientras que el impulso específico de los motores F-1 del Saturn 5 llegaban a 260 segundos. Las células de combustible a borde del orbitador usan estos dos líquidos para producir energía eléctrica en un proceso conocido como electrólisis inversa. La quema del LOX y el LH2 no producen sin producir contaminación dejan un subproducto: el vapor de agua.

Hipergólicos

Los Hipergólicos son combustibles y oxidantes que entran en ignición al contacto entre sí por lo que no necesitan otra fuente de ignición. Esta capacidad de encendido los hace especialmente útiles para los sistemas de maniobramiento tanto tripulados como no. Otra de sus ventajas es el almacenamiento, ya que no necesitan temperaturas extremamente bajas como los criogénicos.

El combustible es monometil hidracina (MMH) y el oxidante es tetróxido de nitrógeno (N2O4). La hidracina es un compuesto de nitrógeno e hidrógeno con un olor muy fuerte similar al amoníaco. El tetróxido de nitrógeno es de color rojizo y tiene un olor repugnante. Debido a que ambos son altamente tóxicos, su tratamiento se realiza bajo condiciones de seguridad extrema.

El orbitador usa hipergólicos en su Sistema de Maniobramiento Orbital (OMS) para la inserción orbital, maniobras orbitales y salida de órbita. El Sistema de Control de Reacción usa hipególicos para el control de actitud.

La eficiencia de la combinación MMH/N2O4 en el orbitador es de 260 a 280 segundos en el SCR y 313 segundos en el OMS. La mayor eficiencia del OMS se explica por la las mayores expansiones de las toberas y las elevadas presiones en las cámaras de combustión.

Sólido

Los propelentes sólidos son los más simples de todos. Su uso no requiere turbobombas o complejos sistemas de alimentación de propelentes. Su ignición se produce con un largo chorro de llamas producido desde la punta del cohete lo cual produce el encendido inmediato. Los combustibles sólidos, compuestos por un metal y diferentes mezclas químicas son más estables y permiten un mejor almacenamiento. Por otra parte, la gran desventaja que presentan es que los propelentes sólidos una vez encendidos no pueden apagarse.

Los propelentes sólidos son usados en una variedad de naves y sistemas como el Módulo de Asistencia de Carga (PAM) y en la Etapa Superior Inercial (IUS) que proveen el impulso necesario para que satélites alcancen órbitas geosincrónicas o para entrar en órbitas planetarias. El IUS es utilizado en el Transbordador Espacial.

Un propelente sólido siempre posee su propia fuente de oxígeno. El oxidante del propelente sólido del Transbordador Espacial es perclorato de amonia que constituye el 63,93% de la mezcla. El combustible es una forma de aluminio en polvo (16%) con un oxidante de hierro en polvo (0,07%) como catalizador. El fijador que mantiene a la mezcla unida es ácido acrilonitril polibutadieno (12,04%). Además, la mezcla contiene un agente de protección epoxy (1,96%). El fijador como el agente epoxy son quemados como combustibles contribuyendo al empuje.

El impulso específico de los SRB del Transbordador Espacial es de 242 segundos a nivel del mar y 268,6 segundos en el vacío.

Instalaciones de la NASA para el programa del Transbordador Espacial

Despegue del Transbordador Espacial
Detalle

El Centro Espacial Kennedy es el centro principal de la NASA para las pruebas chequeos y lanzamiento del Transbordador Espacial y sus cargas, el Centro también es uno de los sitios de aterrizaje del Transbordador.

Los Transbordadores despegan del Complejo de Lanzamiento 39 ubicado sobre Merrit Island, Florida, al norte de Cabo Cañaveral. Las instalaciones del Complejo de Lanzamiento 39 han sufrido modificaciones desde la época de las misiones Apollo para poder adaptarse a la tecnología del Programa del Transbordador Espacial.

Instalación de Aterrizaje del Transbordador

La pista de aterrizaje para el Transbordador Espacial es una de las más grandes del mundo. La pista del KSC está ubicada a unos tres kilómetros al noroeste del Edificio de Ensamblaje de Vehículo en un alineamiento noroeste/sudeste. La pista de aterrizaje tiene el doble de longitud que las pistas de los aeropuertos comerciales. Mide aproximadamente unos 4.752 metros de largo con una amplitud de 91,4 metros y tiene 40,6 centímetros de espesor en el centro. En cada extremo hay un espacio de 305 metros para propósitos de seguridad. A cada lado de la pista corren unos pequeños surcos de 0,63 centímetros de ancho y profundidad.

Debido a que el orbitador una vez que ha reentrado a la atmósfera carece de un sistema de propulsión propio tiene que valerse de la suspensión aerodinámica provista por el aire. La velocidad de aterrizaje varía entre 343 a 364 kilómetros por hora.

Para lograr un perfecto aterrizaje, el orbitador necesita de ayuda de navegación que se encuentra tanto en tierra como a bordo de la misma nave. El Escáner de Rayos Microondas del Sistema de Aterrizaje sirve para el acercamiento final y dirige al orbitador a un punto determinado de la pista.

Aterrizaje de Discovery

Los aterrizajes se realizan de noroeste a sudeste (Pista 15) o de sudeste a noreste (Pista 33). La pista no es perfectamente plana, ya que tiene una pendiente de 61 centímetros desde la línea central hasta el borde. Esta pendiente junto con los surcos constituyen un efectivo método de dispersión del agua. Los surcos además son de utilidad para la resistencia al deslizamiento superficial. Modificaciones posteriores de la pista de aterrizaje aumentaron su longitud, por lo que actualmente mide unos 5.182 metros de largo.

Instalación de Procesamiento del Orbitador

Horas después de haber aterrizado el orbitador es transportado hasta el Edificio de Procesamiento en el KSC. El edificio tiene tres bahías, cada una de 60 metros de largo y 46 metros de ancho y 29 metros de alto que ocupan un área de 2.694 metros cuadrados. La bahía inferior conecta a las bahías 1 y 2. Tiene 71 metros de largo, 30 mts de ancho y cerca de 8 metros de altura. La bahía 3 está ubicada al norte y al este de las dos primeras; tiene además una bahía inferior adyacente. Otros anexos y estructuras proveen del espacio necesario para realizar el mantenimiento del orbitador. Cada bahía superior viene acompañada de un brazo grúa de 27 toneladas de peso con una altura aproximada de 20 metros. Una serie de plataformas, un puente de acceso principal y dos puentes móviles motorizados proveen los accesos al orbitador. Las bahías superiores tienen un sistema de escape de emergencia en caso de que se produzca el escape de hipergólicos. La bahía inferior tiene equipos eléctricos, mecánicos una sala de comunicaciones, oficinas y salas de supervisión del control. Todas las bahías tienen sistemas de protección en caso de incendio.

El control postvuelo, y mejoras además de la instalación de cargas en posición horizontal se realizan en este edificio. Los satélites instalados en posición vertical normalmente son instalados en la plataforma de lanzamiento.

Después del procesamiento, el orbitador es remolcado hasta el Edificio de Ensamblaje a través de la gran puerta al extremo norte de la bahía superior.

Instalación para el Sistema de Protección Térmica

Un Sistema de Protección Térmica, compuesto de una red de losetas, filtros y mantas de aislamiento protegen el interior de cada orbitador del calor producido en el despegue y durante la reentrada, además de las bajas temperaturas del espacio. Estos materiales pueden resistir algún daño dentro del tiempo de vuelo y deben ser inspeccionados, reparados o algunas veces reemplazados para la próxima misión.

La reparación y la elaboración final de los materiales del Sistema de Protección Térmica toma lugar en la Instalación del Sistema de Protección Térmica, un edificio de 2 pisos, con un área de 4.088 metros cuadrados. El edificio está ubicado cruzando la calle desde el Complejo de Procesamiento del Orbitador.

Instalación de Logística

El Complejo de Logística, con un área de 30.159 metros cuadrados está ubicado al sur del Edificio de Ensamblaje de Vehículo. Contiene cerca de 160.000 partes de repuestos del Transbordador Espacial y más de 500 trabajadores de la NASA y de empresas contratadas. Una de las características destacables de este edificio es la existencia del sistema de recuperación de partes, el cual automáticamente encuentra y retira partes específicas del Transbordador.

Instalaciones de Procesamiento de los Cohetes Reforzadores Sólidos

Después de 2 minutos del lanzamiento, los SRBs se separan del tanque externo gracias al encendido de retrocohetes y abren sus paracaídas para caer en el Océano Atlántico Norte en donde son rescatados por barcos especiales que los transportan hasta la Estación de la Fuerza Aérea de Cabo Cañaveral.

Instalación para el desarmado del Cohete Reforzador Sólido

Corresponde al área en y alrededor del Hangar AF que junto al edificio forman la Instalación del Desarmado del Cohete Reforzador. Elevadores especiales detrás del Hangar AF elevan a los SRBs del agua. Allí pasan por un lavado inicial y cada cohete es separado en sus cuatro secciones y los ensamblajes superiores e inferiores. Los segmentos principales son devueltos al Complejo de Lanzamiento 39 en el Centro Espacial Kennedy a bordo de vehículos sobre rieles para ser enviados al manufacturero y la recarga del propelente.

Instalación para el Reacondicionamiento y Ensamblaje del Cohete Reforzador Sólido

El reacondicionamiento y la instalación de las secciones superior e inferior se lleva a cabo en este edificio ubicado al sur del Edificio de Ensamblaje de Vehículo. Este complejo está formado por cinco edificios: construcción, ingeniería, servicio, prueba de la sección inferior o prueba de fuego y la instalación de enfriamiento. El edificio de tres pisos para la construcción cuenta con sistema de control automático, una grúa de 24 X 61 metros en la bahía superior y tres robots grúas, estando estos últimos entre los más grandes del mundo.

Instalación para el Proceso de Rotación y Salida

Ubicada al norte del Edificio de Ensamblaje de Vehículo, esta instalación recibe los segmentos de los SRBs cargados con propelente a través de un sistema férreo desde el manufacturero. El complejo incluye un edificio de procesamiento y dos edificios de despacho. La inspección, rotación y el armado de la parte inferior del booster ocurre en el edificio de procesamiento. Los otros dos edificios de despacho sirven para el almacenamiento de los segmentos cargados con propelentes y permanecen allí hasta ser transportados al Edificio de Ensamblaje de Vehículo para ser integrados a las otras partes del booster listas para el siguiente vuelo.

Instalación para el Reacondicionamiento de Paracaídas

Después de que los dos boosters caigan en el Océano Atlántico, dos embarcaciones los recuperan y también retiran los paracaídas que son enrollados en enormes rodillos los cuales son enviados a esta instalación. Una vez allí, los paracaídas son lavados, secados y almacenados en tanques para un uso futuro.

Edificio de Ensamblaje de Vehículo

Edificio de Ensamblaje de Vehículo

Aquí, los boosters son unidos al tanque externo y al orbitador para ser transportados hasta la plataforma de lanzamiento.

Ubicado en el centro del Complejo de Lanzamiento 39, el Edificio del Ensamblaje de Vehículo es uno de los más grandes del mundo cubriendo un área de 3,24 hectáreas y con un volumen de aproximadamente 3.884.460 metros cúbicos. El edificio tiene 160 metros de altura, 218 metros de largo y 158 metros de ancho.

La estructura puede resistir vientos de 125 km/h y está reforzada con vigas de acero de 40,6 centímetros de diámetro hasta una profundidad de 49 metros.

La bahía superior tiene una altura de 160 metros y la bahía inferior, 64 metros. Al este se encuentran las Bahías Superiores 1 y 3 donde se unen los componentes del Transbordador Espacial en posición vertical en la Plataforma Lanzadora Móvil. Al oeste están las bahías 2 y 4 donde se chequea el tanque externo y es también donde se realiza el almacenamiento.

Este edificio tiene más de 70 dispositivos de elevación incluyendo dos grúas de 227 toneladas.

Una vez que el ensamblaje del Transbordador Espacial está completo, se abren las enromes puertas del edificio para permitir la entrada del Transportador Oruga que se desplaza debajo de la Plataforma Lanzadora Móvil y los lleva –con el Transbordador ensamblado- hasta el lugar de lanzamiento.

Centro de Control de Lanzamiento

Centro de Control de Lanzamiento

Es un edificio de cuatro pisos conectado a la parte oriental del Edificio de Ensamblaje de Vehículo a través de un elevado puente cerrado. El Centro de Control de Lanzamiento cuenta con dos salas de operaciones y otras dos de apoyo cada una equipada con el Sistema de Procesamiento de Lanzamiento –un sistema automático de operación computarizada– el cual monitorea y controla en ensamblaje del Transbordador Espacial, el control y las operaciones de lanzamiento.

La cuenta regresiva para el Transbordador Espacial toma cerca de 43 horas gracias al Sistema de Procesamiento de Lanzamiento, de otra manera, llevaría más de 80 horas, como en las misiones Apollo.

Por otro lado, el uso del Sistema de Procesamiento de Lanzamiento requiere la presencia de 225 a 230 personas en la sala de lanzamiento, a diferencia de las misiones Apollo que requerían de cerca de 450 personas.

Una vez que los cohetes de propulsión sólida se encienden en el despegue, el control pasa automáticamente al Centro de Control de Misión en el Centro Espacial Johnson en Houston (Texas).

Estructuras principales de la Plataforma de Lanzamiento
Detalle (sin inscripciones)

Equipo transportable e instalaciones

Plataforma Lanzadora Móvil

El Transbordador Espacial Discovery sobre la Plataforma de Lanzadora Móvil
Detalle

Es una estructura de acero de dos pisos que provee de una base de lanzamiento transportable para el Transbordador Espacial. El cuerpo principal de la plataforma tiene 7,6 metros de altura, 49 metros de largo y 41 metros de ancho. La Plataforma Lanzadora Móvil descansa sobre seis pedestales de 6,7 metros de altura.

Sin ser cargada, una Plataforma pesa cerca de 3,73 millones de kilogramos. Con un Transbordador sin combustible, pesa unos 5 millones de kilogramos.

El cuerpo principal de la Plataforma tiene tres salidas: una para los gases expelidos por los cohetes de propulsión sólida y otra ubicada en el medio, para los tres motores principales.
Sobre la estructura hay dos dispositivos de tamaño considerable a cada lado del hueco de escape de los motores principales. Estos dispositivos se llaman Mástiles de Servicio Trasero y proveen de varias conexiones umbilicales al orbitador incluyendo una línea de oxígeno líquido a través de uno y una línea de hidrógeno líquido a través del otro. Estos combustibles criogénicos son alimentados al tanque externo a través de estas conexiones desde la plataforma. En el momento de lanzamiento estos umbilicales son retraídos hasta los Mástiles donde son protegidos de las llamas de los motores por una cubierta giratoria.

Cada Mástil de Servicio Trasero tiene 4,5 metros de largo, 2,7 metros de ancho y se elevan a unos 9,4 metros de altura sobre el piso de la plataforma.

Otros umbilicales transportan helio y nitrógeno, además de energía eléctrica y enlaces de comunicación.
Ocho pernos, cuatro en cada base del los SRB sostienen al Transbordador Espacial sobre la Plataforma Lanzadora Móvil. Estos pernos encajan con otros pernos opuestos sobre los dos huecos de escape de los SRBs. La nave se desconecta de la Plataforma mediante pirotecnia que rompe los enlaces de estos pernos.

Cada Plataforma Lanzadora Móvil contiene dos niveles internos que proveen de equipos eléctricos, de prueba y de carga de propelentes.

Transportador Oruga

Transportador Oruga
Detalle

Estos vehículos especiales transportan al Transbordador Espacial montado sobre la Plataforma Lanzadora Móvil desde el Edificio de Ensamblaje de Vehículo hasta la zona de lanzamiento. Se trata de dos orugas (nombre dado a los vehículo cuya tracción se da sobre correas móviles como la de los tanques de guerra) que tienen 6,1 metros de altura, 40 metros de largo y 34,7 metros de ancho. Cada una pesa unos 2,7 millones de kilogramos sin carga. Un vehículo de este tipo tiene seis orugas con 57 secciones cada una. Cada conjunto de ruedas contenido en la oruga pesa unos 907 kilogramos.

La velocidad máxima de la oruga con el Transbordador a bordo es de 1,6 km/h, mientras que sin carga tiene una velocidad máxima de 3,2 km/h.
La oruga tiene un sistema de nivelación para contrarrestar los 5 grados de inclinación hasta el sitio de lanzamiento y posee además, un sistema de rayos láser que le permite ubicarse en una posición precisa.

Cada oruga es impulsada por dos motores diesel de 2.750 caballos de fuerza. Los motores controlan unos generadores de 1.000 kilovatios que proveen de energía eléctrica a los 16 motores de tracción.

Camino del Transportador Oruga

Camino del Transportador Oruga
Detalle

Una carretera de 39,6 metros de ancho es usada por el Transportador Oruga en un trayecto desde el Edificio de Ensamblaje de Vehículo hasta la plataforma de lanzamiento que están separados por unos 4,8 km.

El camino consiste en dos carriles de 12 metros separados por una franja central de 15 metros. Para soportar el peso de la carga total (unas 7,7 millones de kg.) el camino está compuesto por cuatro capas. La parte superior es una capa de grava de río de 20,3 cm. en las curvas y 10,2 cm en los trayectos rectos. Las otras capas –en sentido descendiente- son: 1,2 metros de roca comprimida, 76 cm de un relleno selecto y 30 cm de un relleno compacto.

La distancia desde el Edificio de Ensamblaje de Vehículo a la Plataforma 39A es unos 5,5 km. y a la Plataforma 39B, unos 6,8 km.

Contenedor de Carga

Este contenedor instala las cargas útiles en sentido vertical y opera en varias instalaciones. En la Instalación de Procesamiento del Orbitador sirve para las cargas de posición horizontal.

Cada contenedor está sellado herméticamente y puede llevar cargas de hasta 4,5 metros de diámetro y 18,3 metros de longitud. El peso máximo que permite es de aproximadamente 22.680 kg.

Transportador del Contenedor de Carga

Es un camión de 48 ruedas que puede transportar el Contenedor ya sea en posición vertical u horizontal. El Transportador tiene unos 19,8 metros de largo y 7 metros de ancho, con una plataforma que puede ser elevada o bajada desde 1,5 mts. Hasta 2,1 mts.

Cada rueda tiene un eje independiente lo que le permite desplazarse libremente en cualquier dirección. Un motor diesel impulsa al Transportador en las actividades exteriores, pero cuando está dentro de una instalación funciona con un motor eléctrico.

Cuando está completamente cargado tiene una velocidad máxima de 8 km/h, pero también se puede desplazar ha velocidades del orden de 0,636 centímetros por segundo (o lo que es lo mismo: 0,022 km/h) para las cargas que necesitan un movimiento de precisión.

Plataformas de lanzamientos 39A y 39B

Las Plataformas A y B del Complejo de Lanzamiento tienen un tamaño casi octogonal. Cada una cubre un área de 0,65 km2. La parte central de la Plataforma A está situada a unos 14,6 metros sobre el nivel del mar, y la Plataforma B a 16,8 mts. Antes del retorno a vuelos en 1988 después de la trágica misión del Challenger, el Complejo sufrió 105 modificaciones. Las modificaciones fueron realizadas para mejorar la inspección de los sistemas.

La parte superior de cada Plataforma mide 119 X 99 mts. Las dos estructuras principales de cada Plataforma de Lanzamiento son la Estructura de Servicio Fija y la Estructura de Servicio Giratoria.

Estructura de Servicio Fija

Está ubicada al norte de cada Plataforma de Lanzamiento. Es una estructura abierta de cerca de 12,2 metros cuadrados. Una grúa en la parte superior provee de acceso para las operaciones pro-lanzamiento. La estructura tiene 12 pisos de trabajo a intervalos de 6,1 metros cada uno. La altura de la estructura es de 75 metros. Mientras que la altura hasta la grúa superior es de 81 mts. por encima de todo se encuentra el pararrayos: una estructura cilíndrica de fibra de vidrio con una longitud de 24 metros. Con el pararrayos, la Estructura de Servicio Fija tiene una altura de 106 metros.

La Estructura de Servicio Fija tiene tres brazos de servicio:

Ingenieros en la escotilla del Orbitador
Detalle
  • Brazo de Acceso del Orbitador: este brazo se extiende para permitir el acceso de personal especializado al compartimiento de la tripulación en el Orbitador. La parte extrema de este brazo comprende una sección llamada “cuarto blanco”. Este pequeño cuarto permite el acceso de un máximo de seis personas y permite el acceso a la escotilla a través de la cual los astronautas se ubican en sus posiciones.

El Brazo de Acceso al Orbitador permanece en posición extendida hasta los 7 minutos 24 segundos previos al lanzamiento para proveer una salida de emergencia a la tripulación. Mide 19,8 metros de largo, 1,5 metros de ancho y 2,4 metros de altura. Este brazo está fijado a la Estructura de Servicio Fija a un nivel de 44,8 metros sobre la superficie.

En caso de emergencia, el brazo puede extendido mecánica o manualmente en cerca de 15 segundos.

  • Brazo de Línea de Acceso para la Ventilación de Hidrógeno del Tanque Externo: este brazo permite la unión de las líneas umbilicales del tanque externo con las instalaciones de la plataforma además de proveer acceso para el trabajo en el área del tanque. Este brazo se retrae varias horas antes del lanzamiento dejando los cables umbilicales unidos al tanque los cuales son cortados en el instante en el que los boosters se encienden. Los cables vuelven a la torre de la estructura donde son protegidos de la llamas de los motores gracias a una cortina de agua.
Conexión umbilical al tanque externo
Detalle

Brazo de Línea de Acceso para la Ventilación de Hidrógeno del Tanque Externo mide 48 metros de largo y está unido a la Estructura de Servicio Fija a un nivel de 51 metros.

  • Brazo de Ventilación de Oxígeno Gaseoso del Tanque Externo: este brazo se extiende hasta la parte superior del tanque exterior donde baja un cobertor o capullo en la punta del tanque. El capullo contiene nitrógeno gaseoso calentado que corre a través de esta cubierta para evitar que los vapores de la abertura de ventilación se condensen formando hielo que puede desprenderse y por lo tanto dañar a la nave durante el despegue. El sistema del brazo de ventilación tiene 24,4 metros de largo, 1,5 metros de ancho y 2,4 metros de alto. Este brazo está adherido a la Estructura de Servicio Fija entre los niveles correspondientes a los 63 y 69 metros.

El cobertor es retirado de la abertura de ventilación a los 2 minutos y 30 segundos previos al lanzamiento y el brazo es retraído hasta la estructura de la torre y puede ser vuelto a su posición extendida si se detiene la cuenta regresiva.

Estructura de Servicio Giratoria

Estructura de Servicio Giratoria
Detalle

Provee de protección al Transbordador y acceso a la bahía de carga para la instalación y servicio de cargas en la plataforma. La estructura gira de un tercio de circulo a 120° para que las puertas de la sala de cambio de carga se acoplen a la bahía de carga del orbitador. El cuerpo de esta estructura empieza a un nivel de 18 metros y se extiende hasta un nivel de 57,6 metros proveyendo el acceso a cinco niveles. La estructura giratoria, se desplaza en 8 carros sobre rieles. El cuerpo giratorio mide 31 metros de largo, 15 metros de ancho y 40 metros de alto.

El propósito principal de la Estructura de Servicio Giratoria es la de instalar cargas en la bahía del orbitador. Solamente se encarga de la instalación de cargas livianas, para los casos más pesados como compartimentos, laboratorios, etc. se realizan en la Instalación de Procesamiento del Orbitador.

Cuarto de Intercambio de Carga
Detalle

El Cuarto de Intercambio de Carga se encuentra en la parte central de esta estructura y constituye un cuarto sellado que recibe las cargas del Contenedor de Carga. La limpieza de estas cargas se mantiene gracias a cobertores que impiden que los dispositivos sean expuestos al aire libre.

Unidad Umbilical Central del Orbitador

Esta unidad permite el acceso y trabajo en el área central del orbitador. La misma se extiende desde la Estructura de Servicio Giratoria desde los niveles de 48 a 53,6 metros. Esta unidad tiene 6,7 metros de largo, 4 metros de ancho y 6 metros de alto. Una plataforma de extensión y un mecanismo manual de desplazamiento horizontal permite el acceso a la puerta del cuerpo central del orbitador.

Esta unidad sirve para la alimentación de hidrógeno y oxígeno líquido de las células de combustible, y gases como el nitrógeno y helio.

Sistema Umbilical de Hipergólicos

El sistema transporta el combustible hipergólico y el oxidante, además de líneas de servicio para el hidrógeno y helio desde la Estructura de Servicio Fija hasta el Transbordador Espacial. Es sistema también permite la rápida conexión de las líneas y su desconexión del vehículo. Seis unidades umbilicales son operadas manualmente en la plataforma. Estas unidades están ubicadas a cada lado de la parte inferior del orbitador. Estas unidades sirven al Sistema de Maniobramiento Orbital y el Sistema de Reacción de Control, además de la bahía de carga y el área del morro del orbitador.

Sistema de Protección Climático

Este sistema ubicado en las plataformas A y B sirve para proteger al orbitador de las inclemencias del tiempo como granizo, chaparrones y escombros transportados por el viento que podrían dañar al Sistema de Protección Térmica y las mantas de aislamiento.

La Estructura de Servicio Giratoria al cerrarse cubre la mayor parte del orbitador, el Sistema de Protección Climático cubre los espacios libres.

Puertas corredizas que se desplazan entre la panza del orbitador y el tanque externo proveen protección para la parte inferior del orbitador. Estas puertas que miden 16 metros de largo y 11, 6 metros de alto pesan unos 20.866 kilogramos. Las puertas están conectadas a la Estructura de Servicio Giratoria y la Estructura de Servicio Fija. Las puertas se mueven en lados opuestos sobre rieles.

Un sello inflable que protege la parte superior del orbitador se extiende desde el Cuarto de Intercambio de Carga, formando un semicírculo que cubre 90 grados de arco entre el vehículo y el tanque externo. Una serie de 20 o más puertas metálicas dobles de 24,4 por 1,2 metros se extienden desde el Cuarto de Intercambio de Carga en la Estructura de Servicio Giratoria para cubrir las áreas laterales entre el tanque externo y el orbitador.

Sistema Deflector de Llamas

El Sistema Deflactor de Llamas sirve para proteger del fuego del lanzamiento al vehículo y las estructuras de la plataforma.

Un deflector de llamas es una estrutura en forma de V invertida que sirve para desviar las llamas del lanzamiento y dirigirlas a través de las aberturas de la Plataforma Lanzadora Móvil hasta las fosas ubicadas debajo. Las paredes de esta estructura se curvan a medida que se apartan de la zona central y alcanzan una pendiente casi horizontal.

Esta estructura deflectora mide 149 metros de largo, 18 de ancho y 12 mts. de alto. El sistema deflector que utiliza el Transbordador Espacial es doble ya que un lado de la V invertida recibe las llamas de los motores principales, mientras que el lado opuesto recibe las llamas de los cohetes de propulsión sólida.

Los deflectores del orbitador y los cohetes reforzadores están construidos con acero y cubiertos con un material de ablación con un espesor de 12,7 centímetros. Cada deflector pesa más de 453.600 kg.

Además de los deflectores fijos, también hay otros dos que se desplazan sobre la fosa para proveer de protección adicional de las llamas de los cohetes reforzadores.

Sistema de Escape

Provee una ruta de escape para los astronautas del orbitador y los técnicos en la Estructura de Servicio Fija hasta los últimos 30 segundos de la cuenta regresiva. El sistema está compuesto por siete cables que se extienden desde la Estructura de Servicio Fija al nivel del Brazo de Acceso al Orbitador cuyos trayectos terminan en el suelo.

En caso de emergencia los astronautas se introducen en una estructura en forma de balde hecho de acero y rodeado de una red. Cada balde puede servir para tres personas. El cable se extiende unos 366 metros hasta un búnker de refugio ubicado al oeste de la Estructura de Servicio Fija. El descenso dura unos 35 segundos y el frenado se lleva a cabo gracias a una red y a un sistema de frenado por cadenas.

Pararrayos

El pararrayos se extiende desde la parte superior de la Estructura de Servicio Fija y provee la protección al vehículo y las estructuras de la plataforma. El pararrayos está conectado a un cable que se fija a un ancla a 335 metros al sur de la Estructura de Servicio Fija y otro cable se extiende la misma distancia hacia el norte. El rayo que golpee la punta corre por este cable hasta el suelo, de esta manera, el mástil del pararrayos funciona como un aislador eléctrico manteniendo el cable asilado de la Estructura de Servicio Fija. El mástil junto a la estructura acompañante eleva al cable unos 30,5 metros sobre la Estructura de Servicio Fija.

Sistema de Agua para Supresión Sonora

Este sistema instalado en las plataformas protege al orbitador y sus cargas del daño producido por la energía acústica y las llamaradas expulsadas por los SRBs en la fosa deflectora y la Plataforma Lanzadora Móvil.

El Sistema de Supresión Sonora incluye un tanque de agua con una capacidad de 1.135.620 litros. El tanque tiene 88 metros de alto y está ubicado a una posición elevada adyacente a cada plataforma. El agua es liberada justo antes de la ignición de los motores del Transbordador y fluye a través de cañerías de un diámetro de 2,1 metros. El trayecto lo realiza en cerca de 20 segundos. El agua es expulsada a través de 16 boquillas encima de los deflectores de llamas y a través de unas aberturas en el hueco de la Plataforma Lanzadora Móvil para los motores principales del orbitador, comenzando a T menos 6,6 segundos (T corresponde Tiempo (Time, en inglés) que define el preciso momento del lanzamiento).

Para el momento en que los SRBs entren en ignición, un torrente de agua cubre la Plataforma Lanzadora Móvil gracias a seis enormes toberas o rociadores fijados en su superficie.
Los rociadores miden 3,7 metros de altura. Los dos centrales miden 107 cm. de diámetro; los restantes cuatro tienen 76 cm. de diámetro.

Rociadores de agua en la Plataforma Lanzadora Móvil

El punto de mayor flujo de agua se da a los 9 segundos después del despegue con 3.406.860 litros desde todas las fuentes.

Los niveles acústicos llegan a su máximo cuando el Transbordador está a unos 300 metros sobre la plataforma de lanzamiento. El peligro disminuye a una altitud de 305 metros.

Sistema de Supresión de la Tensión del Cohete Reforzador Sólido

Este sistema pertenece al Sistema de Agua para Supresión Sonora. En este caso, se encarga de disminuir los efectos de las presiones reflejadas que ocurren cuando los cohetes reforzadores entran en ignición. Sin el sistema de supresión la presión ejercería mucha tensión en las alas y las superficies de control de orbitador.

Hay dos componentes principales para este sistema de supresión de energía acústica:

  • Un sistema de rociadores de agua que provee un colchón de agua el cual es dirigido a la fosa de llamas directamente debajo de cada booster.
  • Una serie de bolsas de aguas distribuidas alrededor de los huecos de llamas proveen de una masa de agua que facilita la absorción del pulso de presión reflejado.

Usados juntos, esta barrera de agua impide el paso de las ondas de presión de los boosters, disminuyendo su intensidad.
En caso de una misión abortada, un Sistema de Inundación Post-Apagado se encargaría de enfriar la parte inferior del orbitador. También controla la quema del gas de hidrógeno residual después de que los motores hayan sido apagados con el vehículo en la plataforma. Hay 22 bocas de agua alrededor del hueco de escape para los motores principales dentro de la Plataforma Lanzadora Móvil. El agua es alimentada por una línea de abastecimiento con un diámetro de 15 cm. logrando que el agua fluya a 9.463,5 litros por minuto.

Sistema de Eliminación de Hidrógeno del Motor Principal

Los vapores de hidrógeno que se producen durante el comienzo de la secuencia de ignición son expelidos en las toberas de los motores justo antes de la ignición. Como resultado se obtiene una atmósfera rica en hidrógeno dentro de las toberas. Para evitar daños a los motores, seis pre-iniciadores de remoción están instalados en el Mástil de Servicio Trasero. Justo antes de la ignición de los motores principales estos pre-iniciadores son activados y producen la ignición de cualquier remanente de hidrógeno en el área debajo de las toberas. Este proceso evita una brusca combustión en el encendido de los motores principales.

Instalaciones de Almacenamiento de Propelentes

Estas instalaciones están ubicadas en las dos plataformas de lanzamiento. Un tanque de 3.406.860 litros situado en el extremo noroeste de cada plataforma almacena el oxígeno líquido (LOX) que es usado como el oxidante de los motores principales del orbitador.

En realidad estos tanques son enormes botellas al vacío. Éstas mantienen al LOX a temperaturas de –183°C. Dos bombas que abastece 4.540 litros de oxidante por minuto (cada una) transfieren el LOX desde el tanque de almacenamiento hasta el tanque externo del orbitador.

Botellas al vacío similares con una capacidad de 3.217.590 litros y ubicadas al extremo noreste de las plataformas, almacenan el hidrógeno para los tres motores principales del orbitador. En este caso, no se necesitan bombas para mover el LH2 hasta el tanque externo durante las operaciones de abastecimiento, ya que primero un poco de hidrógeno se evaporiza y esta acción crea un presión de gas en la parte superior del tanque que mueve al liviano combustible a través de las líneas de transferencia.

Las líneas de transferencia llevan a los propelentes superenfriados hasta la Plataforma Lanzadora Móvil y alimentan al tanque externo a través de los Mástiles de Servicio Trasero.

Los propelentes hipergólicos usados por los Motores de Maniobramiento Orbital y los Cohetes de Control de Actitud también están almacenados en la plataformas, en áreas bien separadas. Una instalación ubicada en el extremo sudeste de cada plataforma contiene el combustible monometil hidracina. Una instalación en el extremos sudoeste almacena el oxidante, tetróxido de nitrógeno. Estos propelentes son almacenados por líneas de transferencia hasta la Estructura de Servicio Fija y continúan hasta el Sistema Umbilical de Hipergólicos de la Estructura de Servicio Giratoria, con sus tres pares de líneas umbilicales conectadas al orbitador.

Interfaz de la Plataforma de Lanzamiento y el Sistema de Procesamiento del Lanzamiento

Los elementos ubicados en la Sala de Conexión Terminal de la Plataforma proveen los enlaces vitales entre el Sistema de Procesamiento de Lanzamiento en el Centro de Control de Lanzamiento, el equipo de apoyo terrestre, y los dispositivos de vuelo del Transbordador. Esta sala reside debajo de la elevada posición de la plataforma.

Referencias

Artículos relacionados

Bibliografía

  • Information Summaries: Countdown! NASA Launch Vehicles and Facilities, (NASA PMS 018-B (KSC), Octubre de 1991).
  • U.S. Human Spaceflight: A Record of Achievement, 1961-1998. NASA - Monographs in Aerospace History #9, julio de 1998.

Bibliografía complementaria

  • A Space Shuttle Chronology, de John F. Guilmartin y John Maurer (NASA Johnson Space Center, 1988).
  • Entering Space, de Joseph Allen (Stewart, Tabori & Chang, 1984).
  • Before Lift-Off: The Making of a Space Shuttle Crew, de Henry S. F. Cooper Jr. (John Hopkins University Press, 1987).
  • Space Shuttle: The Quest Continues, de George Forres (Ian Allen, 1989).
  • Space Shuttle Log, de Tim Furniss (Jane's, 1986).
  • The Space Shuttle Log: The First 25 Flights, de Gene Gurney y Jeff Forte (Aero Books, 1988).
  • Space Shuttle: The History of Developing the National Space Transportation System, de Dennis Jenkins (Walsworth Publishing Company, 1996).
  • Space Shuttle Operator's Manual, de Kerry Mark Joels y Greg Kennedy (Ballantine Books, 1982).
  • The Last Voyage of Challenger, de Richard S. Lewis (Columbia University Press, 1988).
  • The Voyages of Columbia: The First True Spaceship, de Richard S. Lewis (Columbia University Press, 1984).
  • Mission: An American Congresman's Voyage to Space, de Bill Nelson con Jamie Buckingham (Harcourt, Brace, Jovanovich, 1988).
  • Spaceliner: Report on Columbia's Voyage into Tomorrow, de William Stockton y John Noble Wilford (Times Books, 1981).

Otras fuentes de información

Notas