La Enciclopedia Libre Universal en Español dispone de una lista de distribución pública, enciclo@listas.us.es

Cuadrado mágico

De la Enciclopedia Libre Universal en Español
Saltar a: navegación, buscar

Un cuadrado mágico es la disposición de una serie de números enteros en un cuadrado o matriz de forma tal que la suma de los números por columnas, filas y diagonales sea la misma, la constante mágica. Usualmente los números empleados para rellenar las casillas son consecutivos, de 1 a n², siendo n el número de columnas y filas del cuadrado mágico.

Introducción

Consideremos la sucesión aritmética 1, 2, 3, 4 ... 36 (cuadrado de orden 6), y dispongamos los números ordenadamente en dos series dispuestas en zig-zag:

1 2 3 4 5 6
36 35 34 33 32 31
7 8 9 10 11 12
30 29 28 27 26 25
13 14 15 16 17 18
24 23 22 21 20 19

Resulta evidente que cualesquiera par de números alineados verticalmente suma lo mismo ya que a medida que nos desplazamos por las columnas, en la fila superior se añade una unidad, mientras que en la fila inferior se resta. La suma es en todos los casos la de los números extremos:

n2+1 = 36+1 = 37

Si disponemos el conjunto de números en seis filas:

1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 16 17 18
24 23 22 21 20 19
25 26 27 28 29 30
36 35 34 33 32 31

Como fácilmente se puede apreciar, las sumas en las distintas columnas han de ser necesariamente iguales, ya que los números se encuentran agrupados por pares tal y como estaban en el primer caso (compárese los pares de filas 1ª-6ª, 2ª-5ª y 3ª-4ª con la disposición original). Ahora sin embargo, por ser tres los pares de filas (n/2), la suma será:

cantidad que se denomina constante mágica, y que en nuestro caso es n×(n² + 1)/2 = 6×(36+1)/2 = 111.

Orden n 3 4 5 6 7 8 9 10 11 12 13
M2 (n) 15 34 65 111 175 260 369 505 671 870 1105
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 35

Salta a la vista que el cuadro anterior no es un cuadrado mágico, ya que al disponerse los números de forma consecutiva, las sumas de las cifras de cada fila son cada vez mayores. Sin embargo hemos encontrado seis series de números comprendidos entre 1 y 36, de forma tal que, sin repetirse ninguno, las sumas de las series son la constante mágica. Si en vez de la disposición anterior colocamos los números consecutivamente, obtenemos una disposición en la que los números de la diagonal principal se pueden escribir de la forma (a-1)×n + a.

Calculando la suma, sabiendo que las filas a van de 1 a n:

De nuevo la constante mágica. Más aún, cualquier serie de seis valores en los que no haya dos de la misma fila o columna sumará la constante mágica. Escribiendo el término i,j de la matriz como (i-1)×n + j, y tomando 6 términos cualesquiera con la condición de que ni i, ni j se repitan y varíen de 1 hasta n, la ecuación resultante será exactamente la misma que en el caso anterior y la suma, por tanto, la constante mágica.

Como se puede demostrar, la cantidad de series posibles de n números que cumplan la condición anterior es n!, 720 en cuadrados de orden 6, y ni siquiera son todas las posibles, ya que antes habíamos obtenido seis que no están incluidas entre ellas. En definitiva, siendo posible construir (n²)! matrices en las que ningún término se repita y existiendo al menos n! (en realidad muchas más) combinaciones de números que sumen la constante mágica, se comprende intituivamente que lo que sería de magia es que con tal multitud de posibilidades fuera imposible construir cuadrados mágicos.

De orden 3 existe un único cuadrado mágico (las distintas variaciones se pueden obtener por rotación o reflexión), en 1693 Bernard Frenicle de Bessy estableció que hay 880 cuadrados mágicos de orden 4, posterirmente se ha encontrado que existen 275.305.224 cuadrados mágicos de orden 5; el número de cuadrados de mayor orden se desconoce aún pero según estimaciones de Klaus Pinn y C. Wieczerkowski realizadas en 1998 mediante los métodos de Monte Carlo y de mecánica estadística existen (1,7745 ± 0,0016) × 1019 cuadrados de orden 6 y (3,7982 ± 0,0004) × 1034 cuadrados de orden 7.

Por lo que respecta a órdenes inferiores, es evidente que de orden uno existe un único cuadrado mágico,   1  , mientras que de orden 2 no existe ninguno, lo que se puede demostrar considerando el cuadrado mágico a, b, c, d de la figura; para que tal disposición fuera un cuadrado mágico deberían cumplirse las siguientes ecuaciones (siendo M la constante mágica o cualquier cantidad, si se quiere):

a b
c d
a + b = M
a + c = M
a + d = M
b + c = M
b + d = M
c + d = M

escribiendo el sistema de ecuaciones en forma matricial y buscando el orden de la matriz de coeficientes, se obtiene que es tres, mientras que el número de incógnitas es cuatro, de modo que el sistema sólo tiene la solución trivial a = b = c = d = M/2 siendo imposible construir un cuadrado mágico en el que las cuatros cifras sean distintas.

The Astronomical Phenomena (Tien Yuan Fa Wei). Compilado por Bao Yunlong en el siglo XIII, edición de la Dinastía Ming, 1457-1463. Biblioteca del Congreso de los EE.UU.

Historia

4 9 2
3 5 7
8 1 6

En la antigua China ya se conocían los cuadrados mágicos desde el III milenio adC, como atestigua el Lo Shu. Según la leyenda, un cierto día se produjo el desbordamiento de un río; la gente, temerosa, intentó hacer una ofrenda al dios del río Lo (uno de los desbordados) para calmar su ira. Sin embargo, cada vez que lo hacían, aparecía una tortuga que rondaba la ofrenda sin aceptarla, hasta que un chico se dió cuenta de las peculiares marcas del caparazón de la tortuga, de este modo pudieron incluir en su ofrenda la cantidad pedida (15), quedando el dios satisfecho y volviendo las aguas a su cauce.

Igualmente conocieron combinaciones de esta clase los indios, egipcios, árabes y griegos. A tales cuadrados, las diferentes culturas les han atribuido propiedades astrológicas y divinatorias portentosas grabándose con frecuencia en talismanes. Así, como recoge Cornelius Agrippa en De oculta philosophia libri tres (1531), el cuadrado de orden 3 (15) estaba consagrado a Saturno, el de 4 (34) a Júpiter, el de 5 (65) a Marte, el del 6 (111) al Sol, el del 7 (175) a Venus, el del 8 (260) a Mercurio y el de 9 (369) a la Luna; idéntica atribución puede encontrarse en la astrología hindú.

La introducción de los cuadrados mágicos en occidente se atribuye a Emanuel Moschopoulos en torno al siglo XIV, autor de un manuscrito en el que por vez primera se explican algunos métodos para construirlos. Con posterioridad, el estudio de sus propiedades, ya con carácter científico, atrajo la atención de grandes matemáticos que dedicaron al asunto obras diversas a pesar de la manifiesta inutilidad práctica de los cuadrados mágicos. Entre ellos cabe citar a Stifel, Fermat, Pascal Leibnitz, Frenicle, Bachet, La Hire, Saurin, Euler... diríase que ningún matemático ilustre ha podido escapar a su hechizo.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

El cuadrado mágico de Alberto Durero, tallado en su obra Melancolía está considerado el primero de las artes europeas. En el cuadrado de orden cuatro se obtiene la constante mágica (34) en filas, columnas, diagonales principales, y en las cuatro submatrices de orden 2 en las que puede dividirse el cuadrado, sumando los números de las esquinas, los cuatro números centrales, los dos números centrales de las filas (o columnas) primera y última, etc. y siendo las dos cifras centrales de la última fila 1514 el año de ejecución de la obra.

163213
510118
96712
415141
163213
510118
96712
415141
163213
510118
96712
415141
163213
510118
96712
415141
163213
510118
96712
415141
Algunas disposiciones particulares en el cuadrado mágico de Durero que suman la constante mágica.

Construcción de cuadrados mágicos

Hay numerosas formas de construir cuadrados mágicos, pero las más sencillas consisten en seguir ciertas configuraciones o fórmulas que generan patrones regulares. Además pueden imponerse condiciones adicionales al cuadrado, obteniéndose cuadrados bi-mágicos, tri-mágicos, etc. Análogamente pueden construirse círculos, polígonos y cubos mágicos.

No existe un método general para construir cuadrados mágicos de cualquier orden, siendo necesario distinguir entre los de orden impar, los de orden múltiplo de 4 y el resto de orden par (4×m+2).

Cuadrados mágicos de orden impar

Estos cuadrados pueden generarse según el método publicado en 1691 por Simon de la Loubere, llamado a veces método siamés, país en el que desempeñó el cargo de embajador de Luis XIV, método ya conocido por los astrólogos orientales. Comenzando en la casilla central de la primera fila con el primer número, se rellena la diagonal quebrada con los siguientes en sentido NO (ó NE). Completada la primera diagonal se desciende una posición y se rellena la segunda en el mismo sentido que la anterior, repitiéndose el paso anterior con el resto de diagonales hasta completar el cuadrado.

Construcción de un cuadrado mágico de orden 5

Obviamente, se podría haber comenzado en cualquiera de las casillas centrales de las filas o columnas perimetrales, siendo en cada caso la dirección de las diagonales hacia fuera del cuadrado y el sentido del desplazamiento una vez finalizada cada diagonal el dado por la posición relativa del centro del cuadrado respecto de la casilla inicial.

Resulta evidente que comenzando por cualquier otra casilla las sumas de las filas y columnas será la constante mágica, ya que la posición relativa de las cifras será la misma que en el caso anterior; sin embargo, en la diagonal paralela a la dirección de rellenado no se cumplirá esta condición (sí en la otra). De hecho, la particular elección de la casilla inicial responde a la necesidad de que en la diagonal paralela a la dirección de llenado se coloquen consecutivamente los cinco números centrales de la serie ya que cualesquiera otros cinco números consecutivos no sumarán la constante mágica.

Cuadrados mágicos de orden múltiplo de 4

Se construye un cuadrado con los números dispuestos consecutivamente (véase el segundo cuadrado de orden seis de la introducción), disposición en la que como sabemos, las sumas de las diagonales son la constante mágica. Una vez hecho esto, y conservando la submatriz central de orden n/2 y las cuatro submatrices de esquina de orden n/4 los números restantes se giran 180º respecto del centro del cuadrado, o si se prefiere se recolocan en orden decreciente (en ambos casos el resultado es el mismo).

Construcción de un cuadrado mágico de orden 8

Partiendo de la misma disposición y escogiendo patrones simétricos similares de las cifras a conservar pueden construirse cuadrados mágicos diferentes al obtenido antes, como el siguiente:

Construcción de un cuadrado mágico de orden 8, método alternativo

Variantes

Existen multitud de variantes de los cuadrados mágicos simples que acabamos de describir, así como métodos alternativos de construcción de los mismos que pueden encontrarse en las páginas abajo indicadas, de modo que aquí nos limitaremos a hacer una breve descripción de algunas de la variantes existentes.

494811466123
7131431323543
8302821262042
4533232527175
9342429221641
10153619183740
47239444381

Hay, por ejemplo, cuadrados mágicos que continúan siendo mágicos cuando se les quita una banda exterior; incluso los hay que continúan suiendo mágicos si se les quita una banda y luego una segunda banda, ...

El cuadrado completo de la figura, de orden 7, tiene por constante mágica 175 (los cuarenta y nueve primeros números); el cuadrado interior de orden 5 que comprende los números centrales de la serie anterior (13 a 37), también es mágico y tiene por constante mágica 125, al igual que el cuadrado de orden tres central (números 21 a 29) que tiene una constante mágica de 75.

7 2 11 14
9 16 5 4
6 3 10 15
12 13 8 1

Algunos cuadrados conservan la suma mágica a lo largo de todas las diagonales quebradas, además de filas, columnas y diagonales principales, como el de la derecha. Estas disposiciones se suelen denominar cuadrados diabólicos, aunque también se llama a veces así al cuadrado de Durero que no cumple esta condición. Éste último también se ha llamado a veces cuadrado satánico porque existen muchas combinaciones, ciertamente peculiares, de números simétricamente distribuidos a lo largo de la matriz con los que se consigue la suma mágica, como ya mostramos con anterioridad cuando hablamos de él. Al respecto cabe recordar que el número de combinaciones de n cifras, tomadas de la serie aritmética 1 a n×n, es incluso superior al de cuadrados que se pueden construir con dichas cifras, por lo que encontrar disposiciones aparentemente peculiares tales que se obtenga la suma mágica es más común de lo que se cree. Si nos fijamos por ejemplo en el cuadrado diabólico de la figura, veremos que tales disposiciones también suman 34 (las cuatro esquinas y las cuatro centrales, las cuatro submatrices de orden cuatro, etc., y además las diagonales quebradas, claro que en él no aparece la fecha de creación de Melancolía como sucedía en el cuadrado de Durero.

Los cuadrados p-mágicos son aquellos tales que elevadas todas las cifras del cuadrado a la k potencia, siendo 1≤k≤p, siguen siendo mágicos:

  • El cuadrado bi-mágico menor conocido es el de orden 8 mostrado más adelante y que tiene por constantes mágicas 260 (k=1) y 11180 (k=2). Se conjetura que no existen cuadrados bi-mágicos de orden inferior, aunque no existe prueba concluyente de ello. En 1998, J. R. Hendricks demostró que es imposible construir cuadrados bi-mágicos de orden 3, salvo el que contiene 9 cifras iguales, que de mágico tiene más bien poco.
  • Se han construido cuadrados tri-mágicos de órdenes 12, 32, 64, 81 y 128; el único de orden 12 fue construido por el matemático alemán Walter Trump en junio de 2002.
  • El primer cuadrado tetra-mágico, de orden 512, lo obtuvieron André Viricel y Christian Boyer en mayo de 2001; un mes más tarde presentaron el primer cuadrado penta-mágico, de orden 1024. Ya en 2003, presentaron un cuadrado tetra-mágico de orden 256 y el matemático chino Li Wen uno penta-mágico de orden 729.
16 41 36 5 27 62 55 18
26 63 54 19 13 44 33 8
1 40 45 12 22 51 58 31
23 50 59 30 4 37 48 9
38 3 10 47 49 24 29 60
52 21 32 57 39 2 11 46
43 14 7 34 64 25 20 53
61 28 17 56 42 15 6 35
    
1 22 33 41 62 66 79 83 104 112 123 144
9 119 45 115 107 93 52 38 30 100 26 136
75 141 35 48 57 14 131 88 97 110 4 70
74 8 106 49 12 43 102 133 96 39 137 71
140 101 124 42 60 37 108 85 103 21 44 5
122 76 142 86 67 126 19 78 59 3 69 23
55 27 95 135 130 89 56 15 10 50 118 90
132 117 68 91 11 99 46 134 54 77 28 13
73 64 2 121 109 32 113 36 24 143 81 72
58 98 84 116 138 16 129 7 29 61 47 87
80 34 105 6 92 127 18 53 139 40 111 65
51 63 31 20 25 128 17 120 125 114 82 94
Cuadrado bi-mágico de orden 8
(constantes mágicas 260 y 11.180)
Cuadrado tri-mágico de orden 12
(constantes mágicas 870, 83.810 y 9 082.800)

Pueden construirse cuadrados mágicos con números extraídos de cualquier sucesión aritmética independientemente del número inicial y de la razón de la serie. Siendo a0 el primer término y r la razón, fácilmente se demuestra que la constante mágica será en este caso:

Análogamente, se pueden construir cuadrados mágicos a partir de sucesiones geométricas, en cuyo caso serán los productos los que den por resultado la constante mágica. Estos pueden construirse con las reglas dadas para los cuadrados aritméticos, sin más que sustituir el término de la serie geométrica en la posición indicada por la correspondiente de la serie aritmética:

Sucesión
aritmética
6 1 8
7 5 3
2 9 4
     Correspondencia
1 2 3 4 5 6 7 8 9
1 2 4 8 16 32 64 128 256
     Sucesión
geométrica
32 1 128
64 16 4
2 256 8

La constante mágica es en el caso general

cuya similitud con la ya obtenida para las series aritméticas es palpable.

También se han construido cuadrados mágicos con series de números primos consecutivos, o con las cifras decimales de los recrípocos de la serie aritmética de los números naturales, etc.

Por último señalaremos la existencia de disposiciones mágicas n-dimensionales; así, con la serie 1 - n3 pueden contruirse cubos mágicos, y en general, con la serie 1 - nr cuadrados mágicos r-dimensionales de orden n, con sus respectivas variantes multi-mágicas y cuya visualización no es inmediata, aunque pueden tratarse cómodamente mediante el empleo de ordenadores.

Referencias

Artículos relacionados

Bibliografía

  • Diccionario Enciclopédico Hispano-Americano, Montaner y Simón Editores, Barcelona, 1887, Tomo I, pp. 20-22.

Otras fuentes de información

Notas